Makai Ocean Engineering, Inc.

Seawater Air-Conditioning & Deep, Cold Water Pipeline Experience

Outline of Presentation:

- What is Seawater Air Conditioning?
- Seawater AC Technology.
- Deep Water Pipelines major cost and risk
- Why are we interested in SWAC?
- Where is it being used?
- Can it be applied in Hawaii?

Basic SWAC Components:

Pipe

- Heat Exchanger
- Pump StationDistribution

Schematic:

- Cooling sourceTransparent to theUser
- Same Temperatures
- No seawater at user
- Simple Substitution

Typical Arrangement

- Seawater and fresh water isolated
- Fresh chilled water adequate temperature

Access to Cold Water

- Most oceans
 - 42-3 deg F at 2000'
- Lakes in N climates
 - 39-40 deg F at 300'
- Infinite Heat Sink

Heat Exchangers

- Titanium
- Standard for Seawater
- No fouling –Proven atNELHA
- No corrosion

Deep Water Pipelines: Technology Developed in Hawaii

- World Recognized SWAC potential for years
- Major Unknown Technology: Deep Water Pipes
- Pipelines at NELHA have made SWAC practical
- 5 major deep water pipelines developed in Hawaii
 - 1979 through 2001.

Major Pipelines by Makai

- NELHA
 - 24" Mini OTEC
 - 12" Down the Slope
 - 18" Pendant
 - 48" Pipe lost
 - 40" Catenary
 - 55" DTS and Pendant

- Others
 - Cornell 63"
 - DOE 8' suspended R&D
 - DOE 8' Down the slope demo
 - 63" Toronto
 - 40" India suspended

Mini OTEC

- First Hawaii deep water pipeline
- HDPE
- Flexible mooring and intake pipe

Hawaii Pipelines – Keahole Pt.

Steep Slope

Rough Seafloor

Pipeline Material

- HDPE
- Rugged
- Flexible
- Strong Joints
- Long Life in seawater

Pipeline Joints

- Heat Fused
- Strong asPipe

CWP Launch

- Railroad
- Launch as Pipe is Fused
- Pipe Floats Airfilled

40" CWP Launch

Pre-Deploy

- Assemble Pipe Section in Kawaihae Harbor
- Tow to site overnight

CWP Tow

- Tow Air-Filled
- 15% to 90% buoyant
- Low pressure inside

Alignment

- Align over Path
- ShorelineConnection

40" CWP prior to Submergence

Makai Ocean Engineering, Inc.

Controlled Submergenc

■ Balance of Pipeline Properties

Inspection, Maintenance

Top of Catenary

Intake

Makai Ocean Engineering, Inc.

Newest NELHA Pipeline:

- 3000' (900m) intake
- 55" diameter warm and cold water pipes
- 39° F. (4° C.) intake
- 27,000 GPM (1.7 m³/sec) cold water flow
- Deployed September, 2001
- Suitable 17,000+ tons AC

Pump Station

Makai Ocean Engineering, Inc.

55" CWP

- Suitable for 17,000+ tons of AC
- 4 deg C water

Why SWAC?

- The right solution:
 - Economically and
 - Environmentally
- Simple Technology
- 75% to 90% Energy Savings
 - Comparable reduction in emissions
- Reduce or eliminate fluorocarbons
- No global warming
- Economical today at some locations

Where is SWAC being used?

- Cornell University, Ithaca, NY: 20,000 tons
- Toronto, Canada: 58,000 tons
- New Brunswick, Nova Scotia: 1000 tons
- Sweeden, large systems
- Hawaii (NELHA) 30-50 tons
- Tahiti: 450 tons *
- Curação: 1200 tons *
- Korea: 2000 tons *
- * under development

Cornell – Project

Cornell – CWP

- 2mi, 63" dia pipeline
- 32,000 gpm
- 4-5 deg C.

Makai Ocean Engineering, Inc.

A major lake Installation

Toronto

- Municipal Water + Cooling
- 3-63" Pipelines, 4 mi long each
- Lake Ontario
- In Construction

Innovative proposal "borrows" coldness from Lake Ontario to replace traditional forms of air conditioning

Toronto: 58,000 tons AC

Basic Elements of Deep Lake Water Cooling

Temperature Conversion

39.2F = 4C 55.5F = 13.1C 40F = 4.44C 54.5F = 12.5C 41F = 5C 56F = 13.33C 38F = 3.33C 58F = 14.44C

Pump

H/X = Heat Exchanger

Toronto Environmental:

- Energy use is <u>reduced by up to 75%</u> compared with conventional chiller equipment
- DLWC cooling saves 30 million kWh/yr, enough to meet the power requirements of 4,200 homes
- 45,360 kg of refrigerants are eliminated
- CO₂, NOx and SOx emissions are reduced

Is SWAC Economical?

- SWAC has high capital, low operating costs
- Conventional has low capital, high operating costs
- SWAC prices do not escalate over lifetime
- High Capital not attractive to developers

Parameters favoring SWAC:

- Good Access to deep cold water
- Customers close to shore, small distribution
- High Utilization throughout the year
- Large Size
- High Electrical Rates

Not all have to be favorable

Utilization

- Major SWAC cost is capital
- Operating costs are low
- This favors maximum use
- Hi better thanCornell or Toronto

Impact of Size

SWAC vs Conventional Design.

- Minimum Operating Temperature
 - Conventional AC: minimum limited by operating costs.
 - SWAC: minimum limited by source and cost of pipelines.
 - Design to preserve minimum temperature
 - Use boosting chillers, if necessary
- Temperature Differential
 - Conventional AC: Costs proportional to dT.
 - SWAC: Can increase dT at little additional operating cost.
 - Unique design opportunities: open air cooling, etc.

Oahu

- West Coast
- Honolulu
 - Long pipe
 - Large demand

West Beach Bathymetry

West Beach – Levelized AC Costs

- Clearly Cost Effective
- Size Varied:12,700 ton to1,300 ton
- Best Site onOahu

Kakaako

- New Development
- Large Volume
- **■** Few Landowners
- Pipes slightly longer than Toronto
- Second best site on Oahu

SWAC on Oahu

- A significant and important natural resource
- 75% to 90% energy savings for SWAC
- Very positive environmentally
- Potential Impact on Oahu, ~50,000 tons now
 - save 2% of total power or
 - equal to all solar hot water heaters.
- Widespread use inevitable for Oahu
- Major impact today: An export technology

fini

